Microgrid Training for Advanced Careers in Energy

Dr. Nathan Johnson

Associate Professor, The Polytechnic School

Director, Laboratory for Energy And Power Solutions (LEAPS)

The far-reaching impact of energy security

Civilian


Defense

Humanitarian

Microgrids to improve resilience and counter threat

Technology Policy Service People
Financing Delivery Warranty Standards

Microgrid training content for a growing workforce

100+ hours of content in simulation-based design and hands-on integration delivered in customized training packages

Topic	Hours	Format	Job Category Recommendation	
Introductory Topics	3-7	Online	Manager, Engineer/Designer, Operator, Technician	
Microgrid Concepts and Motivations	3-5	Online, Classroom	Manager, Engineer/Designer, Operator, Technician	
Feasibility Assessment	12-14	Online, Classroom	Manager, Engineer/Designer	
Preliminary System Design	8-10	Online, Classroom	Engineer/Designer	
Power Engineering	10-12	Online, Classroom	Engineer/Designer, Operator	
Business Model Development	6-8	Online, Classroom	Manager	
Permitting and Procurement	3-5	Online, Classroom	Manager	
Commissioning/Deployment	15-22	Online, Classroom, Hands-on	Operator, Technician	
Operation and Controls	10-12	Online, Classroom, Hands-on	Operator, Technician	
Maintenance and Troubleshooting	3-6	Online, Classroom, Hands-on	Technician	

Training for Veterans, active-duty, and government services

Microgrid boot camp for microgrids and grid modernization

One-week introductory course for design, installation, operation, maintenance, and safety.

Monday	Tuesday	Wednesday	Thursday	Friday
Introduction	On-grid and Off-grid Systems in HOMER	Hands-on Integration Microgrid Test Bed	Distribution Network Simulation & Analysis	Walking Tours of Local Facilities
 Basics of microgrids and energy infrastructure Small-scale hands- on activity 	 System sizing and component selection Applying HOMER to personal case study Mobile microgrids 	 Safety training System deployment and testing Primary controls Controller configuration 	 XENDEE asset sizing and placement Power flow analysis QSTS analysis Short circuit analysis Voltage stability 	 Power plant tour (SRP Santan Generating Station – 1.2 GW) Grid-operator control center tour

Expansion through extension education at partner locations

- Point Loma
- MCAS Miramar
- MCAS Yuma
- Port Hueneme

- University of Alaska Fairbanks
- World Bank
- Navajo Nation
- More...

Microgrid design and control courses

- 10 credits of special topics courses offered at ASU
- Topics including feasibility assessment, high-level system design, power engineering, and business models for microgrids
- Hands-on labs focused on asset commissioning and controls

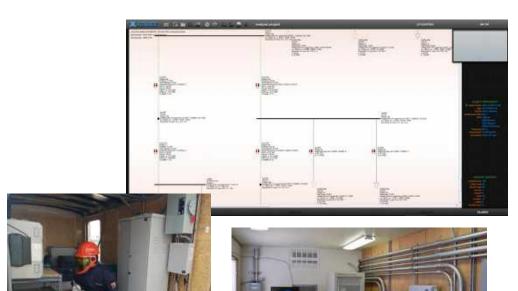
Online microgrid design courses

Beginning with 20 hours of content (free to Navy). Includes videos and activities on the following topics:

Basics of Microgrids (6 hours)

- Basics of Energy Infrastructure (1 hour)
- Microgrid Motivations and Stakeholders (1 hour)
- On-grid Architectures (2 hours)
- Off-grid Architectures (2 hours)

Selecting and Sizing Assets (6 hours)


- Preliminary Technical Design (4 hours)
- Financial Analysis (2 hours)

Power Engineering (4 hours)

Power Flow Analysis (4 hours)

Commissioning and Deployment (4 hours)

- Safety (1 hour)
- Inverter Setup (1.5 hours)
- Microgrid Integration (1.5 hours)

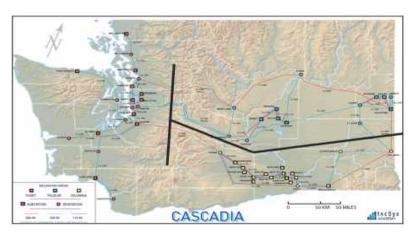
Grid operator training

Power4Vets

- Real-time electric grid simulator
- Interactive self-guided lessons and videos on generation and transmission-scale energy markets, frequency balancing, power flow, voltage control, and fault isolation/recovery

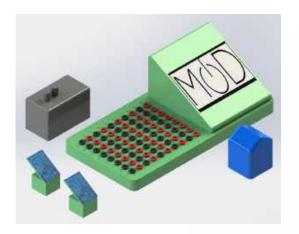
Customized Operator Training

- Location and equipment-specific training
- Focused on understanding and implementing system-specific control strategies for optimizing operation



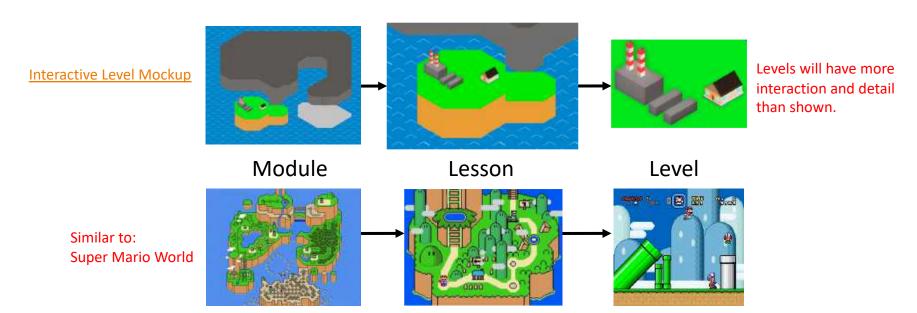
Cyber and kinetic vulnerabilities in electrical infrastructure

2-3 days of NERC continuing education credits for electric grid protection and reliability to threats



Creating a workforce pipeline with K-12 STEM outreach

- Microgrid-on-a-Desk (MOD)
- Stand-alone curriculum with guided interactive control interface
- Gamified interface for completing lessons
- Real and representative components
- Large-scale breadboard to help students make connections between small-scale circuits and full-scale systems
- Banana plug connections for easy plugand-play
- Score tracking and data analytics available for teachers


https://www.horizoneducational.com/juniorproducts/horizon-energy-box/

https://www.irwinscienceeducation.com/national-grid-kit

https://www.stemfinity.com/Alternative-Energy/KNEX-Renewable-Energy-Kit

MOD Gameplay Overview

- Module = World map of all lessons within specific topic area
- **Lesson** = Area within world to complete with specific LO's and activities (i.e. Design a microgrid)
- **Level** = Part of lesson (i.e. Connect the battery to the system and verify voltage)

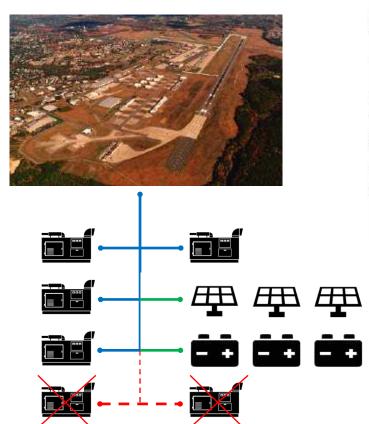
Training Outcomes

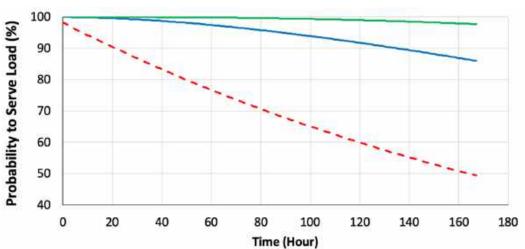
Veteran outcomes


"I cannot thank Dr. Johnson enough for allowing me to be a part of Power4Vets and the Microgrid Boot Camp. I strongly believe those two experiences significantly helped open the door for me at General Electric, and more specifically to be involved in the power industry that I was keen on starting my career in upon graduation"

— Timothy Ward, USN Veteran

"Being a student researcher in Dr. Johnson's lab has been one of the most rewarding experiences of my post-military career. My contribution to the development of the Resilient Infrastructure Simulation Environment (RISE) has helped strengthen my software development skills and I love that I can apply some of the knowledge I gained while in the Navy to this project"


— Joseph Aorahim, USMC Veteran



"Dr. Johnson's programs have allowed me to solve contemporary issues regarding energy security for Stationary and Forward Operating Bases. Having formerly on several such bases, I feel that I bring a unique perspective to share with other Veterans and dependents, and Dr. Johnson's programs allow me to continue to impact our national security in a meaningful way"

Eitan Gerson USMC Veteran

Designing installation resilience, with an ROI

- > 5 installations with 1.7-12.5 MW critical load
- > Increased mission autonomy up to 30%
- Annual energy expenses 1.5-20 \$M/year
- Reduced energy costs up to 50%
- Payback periods 3-15 years

Turnkey infrastructure for humanitarian aid and disaster response

Refugee camp Northern Uganda 12,000 people Limited healthcare Insufficient water No power

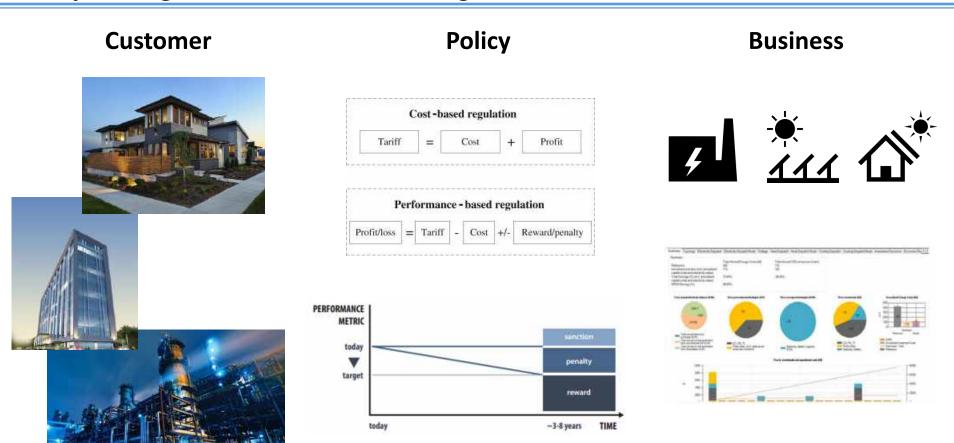


Creating vendor-agnostic controls for scalable microgrids

Linking microgrids to maximize solar utilization

Reduce fuel use by 20-50%

Touch-screen interface


Hardware integration and testing

Policy change to create a common ground for customers and utilities

Thank you!

For more information, please contact:

Nathan Johnson

□ nathanjohnson@asu.edu

Q 480-727-5271

leaps.asu.edu

